
J. Fluid Mech. (2010), vol. 647, pp. 335–359. c© Cambridge University Press 2010

doi:10.1017/S0022112010000108

335

Instability of uniform micro-organism
suspensions revisited

T. J. PEDLEY†
Department of Applied Mathematics and Theoretical Physics, CMS, Wilberforce Road,

Cambridge CB3 0WA, UK

(Received 13 October 2009; revised 21 December 2009; accepted 28 December 2009)

Uniform suspensions of bottom-heavy, upswimming (gyrotactic) micro-organisms that
are denser than water are unstable, through a gravitational mechanism first described
by Pedley, Hill & Kessler (J. Fluid Mech., vol. 195, 1988, p. 223). Suspensions of
downswimming, head-heavy cells do not experience this instability. In the absence
of gravity, a uniform suspension of swimming micro-organisms may be unstable
because of the ‘particle stresses’ generated by the swimming cells themselves, each
of which acts as a force-dipole or stresslet (Simha & Ramaswamy, Phys. Rev. Lett.,
vol. 89, 2002, p. 058101). The stresslet strength S is positive for ‘pullers’ such as
algae and negative for ‘pushers’ such as bacteria or spermatozoa. In this paper, the
combined problem is investigated, with attention being paid also to the effect of
rotational diffusivity and to whether the probability density function f (e) for the
cells’ swimming direction e can be approximated as quasi-steady in calculations of
the mean swimming direction, which arises in the cell conservation equation, and the
particle stress tensor, which appears in the momentum equation. The existence of
both the previous instabilities is confirmed at long wavelength. However, the non-
quasi-steadiness of the orientation distribution means that the particle-stress-driven
instability no longer arises for arbitrarily small |S|, in the Stokes limit, but requires
that the dimensionless stresslet strength (proportional to the product of S and the
basic state cell volume fraction no) exceed a critical value involving both viscosity and
rotational diffusivity. In addition, a new mode of gravitational instability is found for
‘head-heavy’ cells, even when they exert no particle stresses (S = 0), in the form of
weakly growing waves. This is a consequence of unsteadiness in the mean swimming
direction, together with non-zero fluid inertia. For realistic parameter values, however,
viscosity is expected to suppress this instability.

1. Introduction
Bioconvection is the name given to the pattern-forming motions that arise in

a shallow suspension of upswimming micro-organisms that are denser than the
suspending fluid. The cells tend to accumulate near the upper surface of the
suspension, generating a density stratification that is gravitationally unstable, and
which leads to convection in the suspension as a whole. Rational fluid dynamic
modelling of bioconvection was initiated by Childress, Levandowsky & Spiegel (1975),
who assumed that individual cells always swim vertically upwards relative to the fluid.
Kessler (1984, 1985, 1986) hypothesized and then demonstrated that certain algal cells
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swim upwards on average because they are bottom-heavy, i.e. the centre of mass lies
behind the centre of buoyancy, so that a cell that is not oriented vertically will
experience a gravitational torque tending to restore it to the vertical. However, when
suspended in a moving fluid, a cell will also experience a viscous torque, related to
the velocity gradient in the flow, and will swim in a direction determined by the
balance of viscous and gravitational torques. In particular, in a vertical shear flow
(e.g. downflow in a vertical pipe) cells will tend to swim towards the region(s) of most
rapid downflow, such as the pipe axis (Kessler 1985).

If cells were front- or head-heavy, a similar mechanism would cause cells to swim
downwards in still fluid, and towards the region(s) of most rapid upflow, or slowest
downflow, in a vertical shear flow. A similar effect can be achieved by cells of
homogeneous density greater than that of water if their geometry is asymmetric.
Consider a spermatozoon or a bacterium, for example, with a long slender flagellum
(or flagellar bundle) at the rear of a compact head, and suppose that it is released
from rest in a horizontal orientation. It will sink, because it is denser than the fluid,
but will also rotate because the centre of mass is located in or near the head, and
the viscous torque on the tail outweighs that on the head. Thus, it will naturally
develop a head-down orientation, just as if it were head-heavy (Katz & Pedrotti 1977;
Roberts & Deacon 2002), and will respond to shear in the same way.

The above orientation mechanism, termed ‘gyrotaxis’, leads to a mechanism
for instability of a uniform suspension of bottom-heavy cells, without density
stratification. Suppose that natural fluctuations cause a ‘blob’ of fluid to contain
more cells per unit volume than its neighbours. This blob will sink relative to its
surroundings, thereby generating a downwards shear flow, with maximum velocity in
the blob. The gyrotactic torque balance will then cause other cells to swim in towards
the blob or its wake, reinforcing the density difference and speeding up the downflow.
This mechanism would not operate for head-heavy cells, for which gyrotaxis would
be stabilizing. Photographs of vertical plumes, formed in a deep chamber containing
a suspension of the alga, Chlamydomonas nivalis, can be seen in Kessler (1986) and
Pedley & Kessler (1992), for example. Gyrotactic instability of a uniform suspension of
bottom-heavy swimming cells was analysed by Pedley, Hill & Kessler (1988, henceforth
referred to as PHK). They assumed that cells are identical prolate spheroids, each
swimming at the same prescribed speed Vo relative to the fluid in a direction parallel
to its axis of symmetry, represented by the unit vector e that is determined by the
gyrotactic torque balance. Randomness of cell swimming behaviour and intrinsic
variability between cells was represented by an isotropic cell diffusivity D. The bulk
suspension was treated as dilute (no cell-cell interactions) with a Newtonian stress
tensor. PHK showed that disturbances with sufficiently long horizontal wavelength
(wavenumber κ <κc) would always grow, and that the growth rate would be maximum
at a particular finite value of κ (κm). Quantitatively, the predicted wavelength
corresponding to κm was somewhat larger than the experimentally observed spacing
of plumes, but not outrageously so, given the uncertainty in the estimation of certain
parameters.

The model of PHK was ad hoc, in that it assumed a deterministic cell swimming
direction e concurrently with cell diffusion to represent random cell swimming.
Pedley & Kessler (1990, henceforth PK) improved the model by postulating a
probability density function (p.d.f.) of cell swimming direction, f (e), in terms of
which the mean cell swimming direction and the cell diffusivity tensor (no longer
isotropic) could be computed. This function was assumed to satisfy a quasi-
steady Fokker–Planck equation (a partial differential equation in e-space) in which
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Figure 1. Examples of swimming micro-organisms, in which the swimming apparatus exerts
a thrust T backwards on the fluid, while the body or head exerts an equal and opposite drag
force, in the forwards direction, e. The distance between the effective points of application of
these forces is �. The force dipole system is equivalent to a stresslet S of magnitude T �. (a) A
biflagellate algal cell, for which S > 0 (a ‘puller’); (b) a spermatozoon and (c) a bacterium, for
both of which S < 0 (‘pushers’).

random fluctuations in e, represented by an isotropic rotational diffusivity, were
balanced by the tendency for the gyrotactic torque balance to push e back to its
deterministic direction. In addition, PK modified the bulk fluid model by incorporating
terms in the stress tensor Σ additional to the Newtonian viscous stress. Some
of these were the ‘Batchelor stresses’, present in any particulate suspension, but
these proved to have a negligibly small effect on the predicted most unstable
wavenumber and growth rate. However, one additional term was not negligible.
This term arises because the swimming motion of each cell has an effect on
the fluid that, in the far field, is equivalent to a force-dipole or ‘stresslet’ (it is
assumed that the cell Reynolds number is very small, so locomotion is dominated by
viscosity).

Figure 1 shows three examples of swimming micro-organisms, in which a cell’s
swimming apparatus exerts a thrust T backwards on the fluid, while its body or head
exerts an equal and opposite drag force in the forwards direction. If the distance
between the effective points of application of these forces is �, then the magnitude of
the equivalent stresslet is T �. For a biflagellate algal cell, such as C. nivalis, depicted
in figure 1(a), the stresslet strength, S = T �, is positive. Such cells can be thought
of as ‘pullers’, pulling themselves along by their breast-stroke-like flagellar action.
The effect on the fluid is to pull it in along the axis of symmetry and push it out
sideways in the perpendicular plane. Figure 1(b) represents a spermatozoon, pushed
from behind by a waving flagellum, while figure 1(c) represents a bacterial cell,
pushed from behind by a rotating flagellar bundle. In these two cases, S = −T � and
is negative; the cells may be termed ‘pushers’. Such cells push fluid out along the
axis of symmetry, and suck it in from the sides. When there are n identical cells per
unit volume, then the sum of the stresslets makes a contribution to the bulk stress
tensor of

Σ (p) = n S
(

〈ee〉 − 1
3
I
)
, (1)
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where I is the identity tensor and 〈X〉 represents the average of X over e-space (the
unit sphere).

〈X〉 =

∫
Xf (e) d2e. (2)

(The rotational diffusion of cells leads to an additional contribution to Σ (p), as pointed
out by Brenner 1972; Hinch & Leal 1972 and PK. However, it has the same tensorial
form as (1) and is small in practice, so can be included by adding a small positive
quantity to S.)

PK incorporated Σ (p) and the Batchelor stresses into their stability analysis, but
limited themselves to assessing the effect on the gravitational instability modes arising
in the PHK model. For parameter values relevant to C. nivalis this effect was
quantitatively modest and no qualitatively novel features were noted. However, one
category of disturbance modes (‘bend-twist modes’ in the language of liquid crystals)
was ignored altogether, and the particle stress Σ (p) can have a significant effect on
these (see below). Moreover, bottom-heavy algae are not the only swimming micro-
organisms for which bioconvection has been noted and analysed. The bacterium
Bacillus subtilis, also slightly denser than water, is chemotactic, swimming up oxygen
concentration gradients which it may create itself through its consumption of oxygen.
In a shallow chamber, open at the top to the atmosphere, the chemotaxis leads to
a higher concentration of cells near the free surface, and this leads, as before, to
bioconvection, which has been observed by Kessler (1989) and Kessler et al. (1994)
and analysed (in linear theory) by Hillesdon & Pedley (1996). However, such bacteria
can also be constrained to swim in very thin horizontal layers of fluid, for example
above an Agar plate, so variations in cell concentration do not lead to gravitational
instability. There may be a mean concentration gradient, along which the cells may
tend to swim, on average, or there may be no mean gradient and, if there is enough
nutrient for all cells to be active, they may choose to swim in any direction. Interesting
‘whorl and jet’ patterns have been observed in such systems (Mendelson et al. 1999;
Dombrowski et al. 2004). In these circumstances, the particle stresses may play a vital
role in the instabilities that arise.

The importance of particle stresses in generating instability in suspensions of self-
propelled particles in the absence of gravity has been noted and analysed by Simha &
Ramaswamy (2002, henceforth referred to as SR), and more recently by Saintillan &
Shelley (2008) and Subramanian & Koch (2009), henceforth referred to as SS and
SK, respectively. See also a recent paper by Baskaran & Marchetti (2009). SR based
their analysis on the model of ‘flocking’, i.e. the tendency of animals such as fish
and birds to move coherently in large groups, pioneered by Vicsek et al. (1995) and
developed at length by Toner & Tu (1998) (see also the review by Toner, Tu &
Ramaswamy 2005). In the continuum version of this model, the organisms tend to
keep moving at the same speed (relative to a fixed frame of reference) and experience
interactions that tend to keep them a constant distance apart (a ‘particle pressure’
that depends on the cell concentration). SR considered apolar nematic cells as well
as polar cells like the present directed swimmers, but we consider only the latter. The
basic state whose stability is analysed has all the organisms moving (on average) in
the same direction, as for the algal suspension analysed by PHK, although in the SR
model this basic state is more an initial condition than a solution of the governing
equations. The perturbation to the cells’ swimming direction is determined by the
transverse component of the linear momentum equation of the organisms, rather
than by the angular momentum equation (torque balance), but the effect of the fluid
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velocity gradient is represented by the same terms and the equations are quite similar.
One difference between the SR model and the PHK model is that, in the former, the
swimming speed is allowed to vary. This and other aspects of the flocking model,
when applied to micro-organisms, are somewhat questionable (see Discussion), but
the essential role played by the particle stresses is the same in both. They can lead to
novel instabilities, both growing ‘bend-twist’ waves and growing ‘splay-concentration’
modes, as recognized by SR.

This paper re-examines the PHK and PK models for linear instability of a dilute
uniform suspension in an unbounded fluid with particle stresses included and looks at
all potentially relevant parameter ranges, not only those applicable to bottom-heavy
algae. The main new feature of this work, relative to PK, is that the p.d.f. of swimming
directions f (e) is not taken to be quasi-steady, but may depend on space and time
as well as e, allowing for a lag in response to external changes. However, as will be
seen in § 2, this creates a closure problem, and two different approximation schemes
are introduced in order to close the system. In both schemes, the cell swimming term
in the cell conservation equation is taken to be advection by the average, not the
instantaneous, cell swimming velocity. Also, in both schemes, this velocity is assumed
not to be quasi-steady. In one scheme (case I) the particle stress tensor is taken
to be quasi-steady, while in the other (case II) it is not. However, the latter case
leads in general to a set of equations that are unmanageably cumbersome, so this
case is treated only for small values of a parameter, λ, for which rotational diffusion
is dominant; this is the case relevant to the (slightly) head-heavy bacteria used in
experiments.

In developing the theory, consideration has to be given to the representation of
translational diffusion. In general, an ad hoc diffusivity tensor is assumed (cf. SS);
however, in the limit of strong rotational diffusion DR , the translational diffusivity is
known to be proportional to its inverse, and the derivation of this result from the
Fokker–Planck equation is considered.

2. Linear theory
In the following equations, u is the bulk fluid velocity, V is the cell swimming

velocity relative to the fluid (supposed averaged over a volume element), Vo is the
swimming speed of an individual cell, n is the cell number density, e is the cell
orientation unit vector, P is the pressure, ρ, ν are the fluid density and kinematic
viscosity, DH, DV are the horizontal and vertical components of the cell diffusivity

tensor in a still fluid and k̂ is a unit vector in the vertically upward direction
(downwards for head-heavy cells). Other quantities will be defined where they arise.
The coordinates are (x, y, z), with z vertical.

The continuity equation is

∇ · u = 0, (3)

while the Navier–Stokes equation under the Boussinesq approximation is

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P − ng k̂ + ν∇2u +

1

ρ
∇ · Σ (p), (4)

where Σ (p) is given by (1) and

g = + υg�ρ/ρ, (5)
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where υ is cell volume, �ρ is the difference between cell and fluid density, and g is
gravity; in (5) the minus sign is taken (so g < 0) for head-heavy cells.

The equation of conservation of cells is

∂n

∂t
= −∇ ·

[
n(u + V − Vs k̂)

]
+ DH ∇2

1n + DV

∂2n

∂z2
, (6)

where ∇2
1 ≡ ∂2/∂x2 + ∂2/∂y2, V = Vo 〈e〉 and Vs is the cell sedimentation speed,

omitted by PK. Here we have simplified PK’s full (but still approximate) description
of the translational diffusion tensor,

D = V 2
o τ 〈(e − 〈e〉) (e − 〈e〉)〉 , (7)

where τ is the correlation time of a cell’s random walk, by ignoring the off-diagonal
terms (because they do not play a role in the linear instability theory, as shown by PK)
and by taking the diagonal terms to be constant, since their variation does not have
a qualitative effect on the results. It should be noted that the assumptions concerning
translational diffusion are essentially ad hoc, because we are combining two or more
sources of random behaviour and supposing that they can be represented by a single,
diagonal, diffusion tensor. One source of randomness is the natural variability within a
population of swimmers – of swimming speed, stresslet strength, shape, etc. – and the
other is the effective rotational diffusivity, brought about by beat-by-beat fluctuations
in each cell’s swimming apparatus (not Brownian rotation, because the cells are too
big). For the case of algae such as C. nivalis the population effect is likely to be at
least as important as the rotational diffusion. However, for bacteria the latter is likely
to be dominant, as discussed below. In this case, it will be shown that the orientation
distribution is nearly isotropic, and translational diffusion is also almost isotropic,
with a diffusivity

D = 1
3
V 2

o τ = V 2
o /6DR (8)

(see Berg 1983 and Appendix A). Finally, we should note that the swimming mode
known as ‘run-and-tumble’ employed by many bacteria should not be represented by
a diffusivity at all, as shown by SK.

The p.d.f. of swimming direction, f (e, x, t), is given by the following Fokker–Planck
equation (cf. (A 1) in Appendix A):

∂f

∂t
+

1

n
∇x ·

{
n(u + Voe − Vs k̂)f − DT · ∇x(nf )

]
+ ∇e ·

{
β
[

k̂ −
(

k̂ · e
)

e
]
f +

1

2
ΩΩΩ∧ef + α0e · Ê · (I − ee) f

}
= DR∇2

ef, (9)

where ΩΩΩ and Ê are the vorticity and strain rate in the flow, and ∇x, ∇e are the
gradient operators in x- and e-space, respectively. Here DT is the contribution to
translational diffusivity that is not attributable to rotational diffusion, and will be
taken (arbitrarily) to be diagonal (cf. (6)). The inverse gyrotactic time scale β is given
by

β =
gh

να⊥
, (10)

where h is the distance of the centre of mass behind the centre of buoyancy and
α0, α⊥ are numerical constants, equal to 0 and 6 respectively for a spherical cell body,
but equal to 0.31 and 6.80 for a prolate spheroid of axis ratio 1.38, as measured for
C. nivalis. Note that β is also the angular velocity the cell would have if released from
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rest in a horizontal orientation. Note also that the above equations are applicable
to head-heavy cells as well as bottom-heavy cells as long as, for the former, we take

k̂ directed vertically downwards and g in (4) and (5) to be negative; β will remain
positive.

The only difference between the above equations and those employed by PK lies in
the presence of the top line of (9), which represents the fact that f does not respond
instantaneously to temporal or spatial changes in the flow. The solution of (9) is
needed to calculate the V = Vo 〈e〉 term in (6) and, more importantly, the 〈ee〉 term
that arises in the Σ (p) term in (4), using (1).

The basic state whose stability is to be analysed is one in which the bulk fluid is
at rest (u =0) and the cells have a uniform concentration n0 and swimming direction

k̂. A hydrostatic pressure P0(z) is required to balance the negative buoyancy term in
(4). Small perturbations are introduced, of O(ε) say, and we write

n = n0 + εn′, P = P0(z) + ερP ′, f (e, x, t) = f (0)(e) + εf (1)(e, x, t);

we also note that u, ΩΩΩ and Ê are all O(ε) quantities. For any random variable X we
write 〈X〉 = 〈X〉(0)

+ ε 〈X〉(1)
, where 〈X〉(0,1)

are related to f (0,1) by (2). The particle
stress tensor Σ (p) ((1)) varies because both n and 〈ee〉 vary, so

Σ (p) = (n0 + εn′)S(〈ee〉(0) − 1
3
I) + εn0S 〈ee〉(1)

. (11)

In the basic state the only non-zero terms in (9) are those multiplied by β and by
DR; its solution is

f (0)(e) = Λeλk̂·e = Λeλ cos θ (12)

where λ=β/DR, Λ = λ/(4π sinh λ) (so that
∫

f (0)(e) d2e = 1), and we take coordinates
so that

e = (sin θ cosφ, sin θ sinφ, cos θ) ;

see PK for the details. Using (12), PK also obtained 〈e〉0
=K1 k̂, K1 = coth λ − 1/λ

and 〈ee〉(0)
11 = 〈ee〉(0)

22 = K1/λ ; 〈ee〉(0)
33 = 1 − 2K1/λ.

The first-order equation, for f (1), becomes

∂f (1)

∂t
+
(
Voe − Vs k̂

)
· ∇xf

(1) − ∇x ·
(
DT .∇xf

(1)
)

+ ∇e ·
{

β
[

k̂ −
(

k̂ · e
)

e
]
f (1)
}

− DR∇2
ef

(1)

= − ∇e ·
{[

1

2
ω∧e + αoe · E · (I − ee)

]
f (0)

}
, (13)

where (ΩΩΩ, Ê) = ε(ω, E); ω and E are still dimensional quantities. When this is integrated
over e-space, the result is the first-order perturbation to the cell conservation equation
(6). At this point, we make the arbitrary assumption that the advective term in (13)
due to individual cell swimming can be replaced by that due to average cell swimming,
and we will neglect translational diffusion in this equation, so the top line becomes

∂f (1)

∂t
+
(
Vo 〈e〉(o) − Vs k̂

)
· ∇xf

(1). (14)

The main results of this paper, which are obtained for long wavelength, will not be
qualitatively affected by these approximations.
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The linearized, O(ε), governing equations have constant coefficients and can
therefore be analysed in terms of individual Fourier modes; thus, every perturbation
variable is taken to be proportional to

exp (σ t + i κ · x), κ = (k, l, m).

If we multiply (13) by e and integrate over e-space, we obtain an equation for 〈e〉(1)

involving 〈ee〉(1)
and known quantities (see Appendix A):

(σ1 + 2DR)〈e〉(1) + β k̂ · 〈ee〉(1) = 1
2

ω∧〈e〉(0) + α0

{
〈e〉(0) · E − 〈e · E · ee〉(0)

}
≡ R1, (15)

where

σ1 = σ + i(K1V0 − VS)m. (16)

Similarly, if we multiply (13) by ee and integrate, we obtain the following equation
for 〈ee〉(1) in terms of known quantities 〈e〉(1) and the unknown quantity 〈eee〉(1):

(σ1 + 6DR)〈ee〉(1) − β
(
〈e〉(1) k̂ + k̂〈e〉(1)

)
+ 2β〈

(
k̂ · e
)
ee〉(1)

= 1
2

〈e ω∧e + ω∧ee〉(0)
+ α0 〈e (e · E) + (e · E) e − 2 (e · E · e) ee〉(0) ≡ R2. (17)

Since an explicit solution of (13) is unavailable in general, the averaging process
must be truncated or approximated at some stage. PK did integrate (13) explicitly
for the quasi-steady case in which σ1 = 0, and hence could calculate 〈e〉(1) and 〈ee〉(1)

for use in (6) and (11). The simplest way to extend that solution would be to use
PK’s result to calculate 〈ee〉(1) in (11) and (15), so the particle stress will remain
quasi-steady, and then use (15) to calculate 〈e〉(1), so only 〈e〉(1) is changed and is not
quasi-steady. We will refer to this approximation as case I, and the fullest analysis of
the results will be given for this case.

The next level of approximation would be to use PK’s solution for f (1) to calculate

〈(k̂ · e)ee〉(1) in (17), and then combine (15) and (17) to obtain equations for 〈e〉(1)

and 〈ee〉(1) only. However, the manipulations in this case rapidly become extremely
cumbersome in general, so here we restrict attention to small values of λ, as is
appropriate for bacteria and spermatozoa (see table 2). Since β = λDR , this also
means small β . We shall not make any further truncation assumption, apart from
those implicit in the small-λ approximation, but in this case rotational diffusion is
clearly dominant, and we neglect DT . In the case β = 0, it is simple to write down the
exact solution of (14) and (16):

〈e〉(1) =
R1

σ1 + 2DR

, 〈ee〉(1) =
R2

σ1 + 6DR

; (18)

for g = 0 also, this (effectively) was the case considered by SR, SS and SK. However,
we might recall that if β =0 there is no reason for the cells to swim in the same
direction initially, so SR’s basic state is highly artificial at low volume fraction (though
not for high volume fractions of rodlike cells, for example, as envisaged by SR), and
it comes as no surprise to find that it is unconditionally unstable. When β and λ
are zero, the basic state is one of isotropic random swimming, and the development
of patterns from that initial state, with β = g = 0, has recently been investigated in
detail by SS for a system in which the translational diffusion in (9) is independent of
rotational diffusion. We will denote our small-λ expansion as case II.

If we write

u = ε(u, v, w), 〈e〉(1) = e′
i and 〈ee〉(1) = Yij ,
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the perturbations to (3), (4) and (6) become as follows:

ku + �υ + mw = 0, (19)

(σ + νκ2)u = −ikP ′ − iSK3

3ρ
kn′ +

in0S

ρ
(kY11 + lY12 + mY13), (20a)

(σ + νκ2)v = −i�P ′ − iSK3

3ρ
�n′ +

in0S

ρ
(kY21 + �Y22 + mY23), (20b)

(σ + νκ2)w = −imP ′ − gn′ +
2iSK3

3ρ
mn′ +

in0S

ρ
(kY31 + �Y32 + mY33), (20c)

[σ + DH (κ2 − m2) + DV m2 + i(K1V0 − Vs)m]n′ = −in0V0(ke′
1 + �e′

2 + me′
3). (21)

These are supplemented by the equations that give e′
i and Yij in terms of the vorticity

and strain rate, ω and E, appropriate to the case studied, I or II. The equations will
then be seen to be 5 equations for 5 unknowns (u, υ, w, P ′, n′), and can be combined
to form polynomial equations for the growth rate σ . One set of modes (‘twist’ modes)
can be examined by taking the vertical component of the curl of (4), k (20b) − � (20a),
and another set (‘splay’ modes) by taking its divergence, k (20a) + � (20b) + m (20c).
The resulting equations depend on which of the above truncation approximations is
used.

Case I
Here Y is given by PK’s formulae for 〈ee〉(1). The twist operation yields a

single homogeneous equation for the z-component of vorticity, i(kυ − �u). We non-
dimensionalize with respect to micro-organism swimming time- and length scales,
writing

σ =
V 2

0

DH

σ ′, κ =
V0

DH

κ ′, μ =
m

κ
, (22)

and obtain

σ ′ = −ν̂κ ′2 − Ŝκ ′2

2

{
J2μ

2 − α0

[
1

2
J6(1 − μ2) + J5μ

2

]}
, (23)

where

ν̂ =
ν

DH

, Ŝ =
n0S

ρV 2
0

. (24)

Note that μ is the cosine of the angle between the wavenumber vector and the
vertical. Also, the constants Ji , like Ki , are functions of λ defined in PK.

In this case, the splay modes lead to the following cubic equation for σ ′:

(σ̃ + 2D̂R)
[
σ̃ + κ ′2(1 − μ2 + D̂V μ2)

] [
σ̃ − iV̂ κ ′μ + ν̂κ ′2 − Ŝκ ′2B1(μ)

]
− κ ′2(1 − μ2)(ĝ − iK3Ŝκ ′μ)B2(μ) = 0, (25)

where

B1(μ) = 1
2
J2(1 − 2μ2) + 1

2
α0

{
J5(1 − 2μ2)2 + 1

2
(J6 + 9K5)μ

2(1 − μ2)
}

(26a)
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and

B2(μ) = +
1

2
(K1 − β̂J2)

−α0

2

{
K1(1 − 2μ2) − 2K3

λ
(1 − 5μ2) + β̂J5(1 − 2μ2) + β̂α0K53μ2

}
(26b)

and the new dimensionless parameters are

ĝ =
n0gDH

V 3
0

, β̂ =
βDH

V 2
0

, D̂V =
DV

DH

, D̂R =
DH

V 2
0

DR, V̂ = K1 − VS

V0

, (27)

and

σ̃ = σ ′ + iV̂ κ ′μ. (28)

We may note that the last, B2, term in (25) arises from the cell conservation
equation; when that term is zero or negligible, then fluctuations in cell concentration
are not important to any instability. We should also note an important difference
between the above equations (and those used by PK) and the corresponding equations
used by SR and SS. The difference stems from the perturbation of the particle stress
due to the perturbation of 〈ee〉. We (and PK) calculate 〈ee〉(1) on the basis of the
perturbed p.d.f. for e, given by (an approximation to) the Fokker–Planck equation (9)
(or (13)). On the other hand, SR and SS did not perform the averaging, but effectively

replaced 〈ee〉 by ee and set e = k̂ + εe′, where e′ is given by the deterministic equation

∂e′

∂t
+ V0

∂e′

∂z
= −βe′ +

1

2
ω∧ k̂

(where we have neglected DT and have set α0 = 0 for convenience). Thus,

(σ + iV0m + β)(e′
1, e′

2) = 1
2

(ω2, −ω1),

which is essentially the same as obtained from (15) and (16), but the non-zero terms
of the perturbation to Y = ee, i.e. ke′ +e′k, are Y13 = Y31 = e′

1 and Y23 = Y32 = e′
2. Hence,

the B1, B2 terms on the right-hand side of (25) are divided by (σ̃ + β̂), with J2 = 1.
These terms are much easier to calculate using this model, and therefore do allow for
unsteadiness in the particle stress tensor. The order of the dispersion relation, (23)

or (25), is increased by one, the terms (σ̃ − iV̂ κ ′μ + ν̂κ ′2) and ĝ being multiplied by

(σ̃ + β̂).

Case II (λ � 1)
Here we revert to the full Fokker–Planck equation (13), modified by (14), for the

first-order probability distribution function f (1); the intention is to solve for f (1), and
the quantities that depend upon it, to O(λ). Writing f (1) = f

(1)
0 + λf

(1)
1 + · · · , and

noting from (12) that

f (0) =
1

4π
(1 + λ cos θ + O(λ2)),

we obtain

−DR∇2
ef

(1)
0 + σ1f

(1)
0 =

3α0

4πDR

F1(θ, φ), (29a)

−DR∇2
ef

(1)
1 + σ1f

(1)
1 =

DR

sin θ

∂

∂θ

(
sin2 θf

(1)
0

)
+

sin θ

8π
(ω2 cosφ − ω1 sinφ) +

α0 sin θ

4π
F2(θ, φ) +

3α0 cos θ

4π
F1(θ, φ), (29b)
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where θ, φ are spherical polar angles in e-space,

∇2
ef =

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
,

F1(θ, φ) =
1

2
E33(3 cos2 θ − 1) +

[
1

2
(E11 − E22) cos 2φ

+ E12 sin 2φ ] sin2 θ + (E13 cosφ + E23 sinφ) sin 2θ,

F2(θ, φ) = −3

4
E33 sin 2θ +

[
1

4
(E11 − E22) cos 2φ

+
1

2
E12 sin 2φ ] sin 2θ + (E13 cosφ + E23 sinφ) cos 2θ;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)

see PK for further details. The solutions of (29a) and 29b) are

f
(1)
0 =

3α0

4π(σ1 + 6DR)
F1(θ, φ), (31a)

f
(1)
1 =

sin θ

8π(σ1 + 2DR)
(ω2 cosφ − ω1 sinφ) − α0

4π(σ1 + 6DR)(σ1 + 12DR)

×
{

3E33 cos θ

[
− 2(σ1 + 9DR) cos2 θ +

(
σ 2

1 + 16σ1DR + 24D2
R

)
σ1 + 2DR

]
− 2(σ1 + 9DR) [(E11 − E22) cos 2φ + 2E12 sin 2φ] cos θ sin2 θ

+ (E13 cos φ + E23 sinφ) sin θ

[
−8(σ1 + 9DR) cos2 θ +

σ1(σ1 + 8DR)

σ1 + 2DR

]}
. (31b)

These functions are then used to evaluate e′ = 〈e〉1 and Y= 〈ee〉1 to O(λ), as needed
in (20) and (21):

e′ =
λ

σ1 + 2DR

⎡⎣1

6

⎛⎝ ω2

−ω1

0

⎞⎠+
α0(σ1 + 4DR)

5(σ1 + 6DR)

⎛⎝E13

E23

E33

⎞⎠⎤⎦ , (32a)

Y =
2α0

5(σ1 + 6DR)
E + O(λ2). (32b)

It can be seen that all the factors involving the inverse of (σ1 + CDR) (where C =2
or 6) will complicate the equation for the growth rate, but it is these factors that
represent the non-quasi-steadiness of the orientation distribution.

Using the expressions (32a) and (29b) in the governing equations (19)–(21), and
non-dimensionalizing as for case I, we obtain the analogues of (23) and (25) for the
twist and splay modes, respectively. For the twist modes, we have

σ ′ + ν̂κ ′2 +
α0Ŝκ ′2

5(σ̃ + 6D̂R)
= 0, (33)

differing from the O(λ) expansion of (23) only in the numerical factor and (σ̃1+6DR)−1

that multiply the last term (see Appendix B for the small-λ expansions of the
constants Ji).
Thus, σ ′ satisfies a quadratic equation

(σ̃ + 6D̂R)(σ̃ − iV̂ κ ′μ + ν̂κ ′2) +
α0Ŝ

5
κ ′2 = 0, (34)

where we recall that σ̃ = σ ′ + iV̂ κ ′μ.
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Parameter (units) C. nivalis B. subtilis B. subtilis Spermatozoa
(chemotactic) (sedimenting) (sedimenting)

ρ (g cm−3) 1 1 1 1
g (cms−2) 980 980 980 980
ν (cm2s−1) 0.011 0.011 0.011 0.011
�ρ/ρ (1) 0.05 0.10 0.10 0.30
υ (cm3) 2.1 × 10−9 1.5 × 10−12 1.5 × 10−12 1.4 × 10−11

g = υg�ρ/ρ (cm4s−2) 10−7 0 −1.5 × 10−10 −4 × 10−9

n0 (number cm−3) 106 109 109 ?
α⊥ (1) 6.8 n.a. n.a. n.a.
h (cm) 10−5 n.a. n.a. n.a.
β = gh/να⊥ (s−1) 0.16 > 0 1.4 × 10−3 0.02
V0 (cms−1) 6 × 10−3 2 × 10−3 2 × 10−3 3 × 10−3

VS (cms−1) 6 × 10−4 2 × 10−6 2 × 10−6 4.4 × 10−5

S (g cm2s−2) 10−10 −2.7 × 10−11 −2.7 × 10−11 −2.2 × 10−10

DH (cm2s−1) 1.3 × 10−5 1.33 × 10−6∗ 1.33 × 10−6∗ 3.0 × 10−6∗
DV (cm2s−1) 8.2 × 10−6 � DH � DH � DH

DR (s−1) 0.073 0.5 0.5 0.5
α0 (1) 0.31 0.78 0.78 0.9?

Table 1. Parameter values. *For bacteria and spermatozoa DH is calculated from (7), with an
arbitrarily assumed correlation time τ of 1 s. n.a., not applicable; ?, doubtful/unknown.

The splay modes are more complicated. We note that, to O(λ), 〈e〉(0) = 0, so (32a)
gives the leading term for 〈e〉, while 〈ee〉(0) and the diffusivity tensor are isotropic, so

D̂V = 1. The equation for the growth rate, corresponding to (25), becomes

(σ̃ + 2D̂R)(σ̃ + κ ′2)

[
(σ̃ − iV̂ κ ′μ + ν̂κ ′2 +

α0Ŝκ ′2

5(σ̃ + 6D̂R)

]

= λĝκ ′2(1 − μ2)

[
1

6
− α0(σ̃ + 4D̂R)

10(σ̃ + 6D̂R)

]
, (35)

which is a fourth-order algebraic equation, to be contrasted with the third-order
equation in case I.

3. Parameter values
Table 1 lists parameter values pertaining to the two types of micro-organisms

discussed above: biflagellate algal cells, C. nivalis, in the concentrations used in
bioconvection experiments, with three additional columns for sedimenting non-
chemotactic bacteria and spermatozoa, as representatives of head-heavy cells, and
for chemotactic bacteria (β > 0) in the absence of gravity (g = 0). The concentrated
bacterial suspensions that generate whorls and jets (Mendelson et al. 1999) would
have β = 0 and g = 0; in these experiments, the number density n0 of around 1011

cm−3 was 100 times larger than that in the ‘bacterial bioconvection’ experiments of
Kessler (1989). Most of the parameters can be obtained from PHK, Pedley & Kessler
(1990, 1992), Kessler (1989), Hillesdon, Pedley & Kessler (1995) and Bretherton &
Rothschild (1961). In the case of chemotactic bacteria, to model the tendency to
swim in a given direction as an effective restoring torque is entirely ad hoc and all
that can be said about the corresponding value of β is that it should be positive.
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Parameter C. nivalis B. subtilis B. subtilis Spermatozoa
(chemotactic) (sedimenting) (sedimenting)

ν̂ = ν/DH 850 8500 8500 3700

D̂V = DV /DH 0.63 1 ? 1 ? 1 ?

D̂R = DRDH /V 2
0 0.026 0.17 0.17 0.17

V̂ = K1 − VS

V0

0.47 ? 1.9 × 10−3 2.8 × 10−2

Ŝ =
n0S

ρV 2
0

2.8 −6700 −6700 −2.4 × 10−5n0

ĝ =
n0gDH

V 3
0

38 0 −25 −4.4 × 10−5n0

β̂ = βDH /V 2
0 0.058 ? > 0 4.7 × 10−4 6.7 × 10−4

λ= β/DR 2.2 ? 2.8 × 10−3 4.0 × 10−2

Table 2. Dimensionless derived parameters.

Quantity λ= 2.2 λ � 1

Λ 25.46
1

4π
(1 − λ2/6)

K1 0.57
λ

3
(1 − λ2/15)

K3 0.22
λ2

15

(
1 − 2λ2

21

)
K5 −0.11 −2λ

45

(
1 +

2λ2

21

)
J2 0.16

λ3

36

J5 −0.13 − λ

15

(
1 +

λ2

21

)
J6 −0.20 −2λ

15

(
1 − 2λ2

21

)
Table 3. Functions of λ, for λ= 2.2 (C. nivalis) and for small λ (mostly from PK).

However, for non-chemotactic, head-heavy bacteria or spermatozoa in a gravitational
field, the magnitude of β is calculated from resistive force theory as the initial angular
velocity when these organisms are released from rest in a horizontal orientation. We
recall that, in these cases, the only quantity that changes sign is g. Table 2 lists the
dimensionless parameters that appear in (22)–(35) and are the relevant ones for this

stability analysis; the large negative values of Ŝ for bacteria are a consequence of the
assumed cell number density n0, from the experiments reported by Kessler (1989) and
Kessler et al. (1994). It will be noted that sedimentation affects only the advective,

V̂ , terms in (23), (25), (34) and (35). We also note that we have no information on
the anisotropy of the cell diffusion tensor for bacteria and, for simplicity, we shall

take D̂V = 1 in most cases, since this is its value in the small λ limit. However, the
rotational diffusivity for small λ is related to the translational diffusivity as already
discussed (see (8)).

The values of the various functions of λ that arise in equations between (16) and
(28), i.e. Ji, Ki , are given in table 3, where relevant. In many cases, λ is thought to
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be very small, so the first terms in the small-λ expansion are given in table 3. The
functions B1(μ), B2(μ) from (26a) and (26b) are given in Appendix B: it can be seen
that, for small λ, B1 is negative unless α0 = 0 (spherical cells) and μ2 > 1/2, while B2

is positive unless both α0 and μ2 are sufficiently close to 1, i.e. elongated cells and
wavenumber with a sufficiently large vertical component.

4. Results
In this section detailed results are given for cases I and II. In both cases, we will

present some analytical results in relevant asymptotic limits, such as long wavelength
(κ ′ → 0) and large Schmidt number (ν̂ → ∞; see table 2), before supplementing
them with numerical results from the full eigenvalue equation (e.g. (23) or (25)) for
particular parameter values.

4.1. Case I (unsteady mean orientation, quasi-steady particle stress)

Consider first the ‘twist’ mode, ignored by PHK and PK, for which the growth rate is
given by (23). The constants J5 and J6 are negative (see table 3), so it can be seen that

σ ′ is negative, indicating stability, for Ŝ > 0, i.e. for pullers such as Chlamydomonas
(thus the neglect of this mode by PHK and PK did not cause any instability to be

missed). However, σ ′ can be positive if Ŝ < 0 (pushers) as long as |Ŝ| is large enough,
i.e.

ν̂

|Ŝ|
< Max

0�μ2�1

{
−α0

4
J6 + μ2

(
1

2
J2 − α0

2
J5 +

α0

4
J6

)}
. (36)

This mode of instability was postulated by SR. The right-hand side of (36) is equal
to (1/2)J2μ

2 for α0 = 0 (spherical cells), indicating that the most unstable mode has
vertical wavenumber (μ = 1), but the maximum may occur for μ2 < 1, even μ2 = 0, in
some cases with α0 �= 0. In particular, the parameters for sedimenting B. subtilis (or
spermatozoa) given in table 2 show that the right-hand side of (36) is approximately

1.5 × 10−4 (or 1.2 × 10−3), whereas ν̂/|Ŝ| is greater than 1, so a B. subtilis suspension,
at the assumed value of n0, (or a sperm suspension at any realistic n0) would not
be unstable to this mode. This will be the case even for concentrated bacterial
suspensions, with n0 100 times larger.

Now consider the ‘splay’ modes given by (25). Given the large size of ν̂ in realistic
examples (table 2), it is sensible first to consider the limit of (25) in which ν̂κ ′2 is much
larger than the other terms in the square bracket containing it; this corresponds to
the Stokes limit in which inertia is negligible in the bulk flow as well as for individual

swimmers. Then (25) (with D̂V =1 for convenience) reduces to

σ̃ 2 + σ̃ (2D̂R + κ ′2) + 2D̂Rκ ′2 − (ĝ/ν̂ − iK3

Ŝ

ν̂
κ ′μ)(1 − μ2)B2(μ) = 0. (37)

We see immediately that Re(σ̃ ) > 0 if

ĝ

ν̂
(1 − μ2)B2(μ) > 2D̂Rκ ′2, (38)

and since B2(μ) is positive for all μ, in all the cases listed in table 2, and in general
for small λ, there is (gyrotactic) instability for positive ĝ and μ �= 1 at small enough
wavenumber κ ′. Moreover, Re(σ̃ ) is necessarily negative (stability) if ĝ < 0 and κ ′ is

small enough, whatever the sign of Ŝ. However, if ĝ = 0, then the leading terms in the
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small-κ ′ expansion for σ̃ from (37) take the form

σ̃ = −iσ1κ
′ −
(

1 − σ 2
1

2D̂R

)
κ ′2, (39)

where σ1 = K3(Ŝ/2ν̂D̂R)μ(1 − μ2)B2(μ). Hence, there is a weak instability if Ŝ/ν̂ is
large enough whatever its sign. This instability comes from the SK3 terms in the
Navier–Stokes equation (20), i.e. from the perturbation to the particle stress tensor
due to fluctuations in volume fraction multiplied by the basic state particle stress. In
the absence of rotational diffusivity, this instability will occur for all values of the

ratio Ŝ/ν̂, and is the same as that predicted by SR and SS. When DR is non-zero,

there is a critical value of Ŝ/ν̂ given by

Ŝ

ν̂
=

(2D̂R)3/2

Max [K3μ(1 − μ2)B2]
. (40)

If we take Ŝ of the same (large) order as ν̂, then in the above discussion ν̂ is

replaced by ν̂ − ŜB1(μ), these Ŝ terms being due to the perturbation in 〈ee〉, not in n.

Hence, if ŜB1(μ) > ν̂, the stable and unstable modes change round. Since B1(μ) < 0
in virtually all realistic cases, and always for μ close to 1, it follows that strong
pushers can drive instability for such modes even for ĝ < 0. Conversely, since B1(μ)
can be >0 for μ close to zero when α0 is small and strong, nearly spherical pullers
can drive instability even for ĝ < 0 (although the existence of head-heavy pullers is

questionable; see figure 1), but only if |Ŝ|/ν̂ is large enough to make them happen.

For the cases listed in table 2 and Appendix B, |Ŝ|/ν̂ is not larger than 1/|B1(μ)| (see
Discussion).

A little more insight can be gained by performing a small-κ ′ expansion with all

other parameters (including ν̂ and Ŝ) taken to be O(1), so inertia is not totally
neglected. Now the three roots of (25) are, approximately,

σ̃ = −2D̂R

and

σ̃ ≈ κ ′

2

{
iV̂ μ ±

[
−V̂ 2μ2 +

2(1 − μ2)B2(μ)ĝ

D̂R

]1/2
}

. (41)

As long as B2 is positive and μ is taken small enough, this always gives instability if
ĝ > 0, and this is the gyrotactic instability of PHK; B2 is positive, for all μ, in all the

cases listed in table 2, and in general for small λ unless β̂ is very large (Appendix B),
which is unrealistic. For μ �= 0, we see from (41) that the term representing advection
(and sedimentation) can stabilize the gyrotactic instability, if ĝ is small enough,
at sufficiently small wavenumber for both viscosity and the particle stress to be
negligible.

For ĝ � 0, (41) gives neutral stability, so it is necessary to go to the next order in

κ ′. We write ĝ = −G and take D̂V = 1, and obtain

σ̃ = κσ1 + κ2σ2 · · · , (42a)

where

σ1 =
1

2
i

{
V̂ μ ±

√
V̂ 2μ2 +

2B2G

D̂R

(1 − μ2)

}
(42b)
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and (
±√ )

σ2 =
1

2

(
V̂ μ ± √ ){B2G

4D̂2
R

(1 − μ2) − ν̂ − 1 + B1Ŝ

}

+ V̂ μ − μ(1 − μ2)
B2K3Ŝ

2D̂R

; (42c)

we recall that there will be instability if σ2 > 0. In the limit μ = 1, for which B1 is
negative ((26a) and Appendix B) and G is removed from the equation, the upper sign
in (42c) gives instability if (and only if)

Ŝ < − ν̂

|B1| , (43a)

i.e. only pushers give instability, but not unless −Ŝ/ν̂ is sufficiently large; this instability
was discussed above. However, for sedimenting B. subtilis, |B1| ∼ 7×10−5, so again, as
for the twist mode, viscosity will suppress the instability in practice (see Discussion).
In the limit μ = 0 and G > 0, (42c) reduces to

σ2 =
1

2

(
B2G

4D̂2
R

− ν̂ − 1 + B1Ŝ

)
, (43b)

where, in this limit, B2 is still positive, whereas B1 may be either positive (e.g. for C.
nivalis) or negative (e.g. for B. subtilis); see table 2 and (26a). It follows, interestingly,
both that the gravitational term contributes positively to the instability, even for head-

heavy swimmers, and that, when B1(0) > 0, pullers (Ŝ > 0) would, if head-heavy pullers
existed, be more likely to give instability than pushers. From (42c) we can calculate
the values of μ for which σ2 > 0, for particular parameter values. For example, when

ĝ = −25, Ŝ = 1, ν̂ = 10, α0 = 0.9, λ=1 (so β̂ = D̂R = 1/6), we find σ2 > 0 for μ up to
approximately 0.61. It should be recalled that all these instabilities for ĝ � 0 at
low wavenumbers are much weaker than the gyrotactic instability for ĝ > 0, in that
the latter has Re(σ̃ ) = O(κ ′) (from (41)) or O(1) (from (37)) while the former have
Re(σ̃ ) = O(κ ′2).

To check the above analysis, we present numerical results for case I from the full
equation (25). Figure 2 shows plots of Re(σ̃ ) against κ ′ for parameter values of C.
nivalis (see table 2), the different curves corresponding to different values of μ, the
cosine of the angle the wavenumber vector makes with the z-axis. As μ increases,
both the critical value of κ ′ and the maximum growth rate decrease; for μ = 1 and
κ ′ > 0, all roots of (25) have negative real part. There are no surprises here: the
gyrotactic instability occurs for sufficiently small values of κ ′. Quantitatively, too, the
estimates based on (37) are pretty good for C. nivalis: the values of the critical value
of κ ′ given by (38) are compared with the exact solution (from (25)) in table 4. We
see excellent agreement for μ close to 0, getting worse as μ increases. In dimensional
terms, the wavelength of the most unstable disturbance (with κ ′ = 0.12) is around 1.1
cm, not far from the spacing of streaks in the photograph in figure 2 of Pedley &
Kessler (1992).

4.2. Case II (λ � 1)

In this limit we know that D̂V =1 and V̂ = K1 − (VS/VO) ≈ (λ/3) − (VS/VO). Now we

also know that VS � V0 so, arbitrarily, we let VS/V0 = λ(1/3 − q) so V̂ = λq (q may

have either sign). When numerical values are required we take D̂R = 1/6 and α0 = 0
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μ κ ′
c from (25) κ ′

c from (38)

0 0.439 0.439
0.2 0.434 0.431
0.5 0.404 0.386
0.6 0.384 0.360

1/
√

2 0.352 0.317
0.9 0.238 0.198
1 0 0

Table 4. Critical values of κ ′, below which C. nivalis is predicted to experience
gyrotactic instability.

0.08

0.06

0.04Re(σ~)

κ′

0.02

0 0.1 0.2

μ = 0
μ = 0.2
μ = 0.5
μ = 0.6
μ = 1/√2
μ = 0.9

0.3 0.4

Figure 2. Growth rate as a function of wavenumber for case I, with parameters for C. nivalis.
Different curves correspond to different values of μ= m/κ , the cosine of the angle between
the wavenumber vector and the vertical.

(spheres) or 1 (rods); the results will be qualitatively the same for all non-zero α0. We
recall that all quantities are calculated to O(λ).
Twist. The equation for the growth rate is now (34), a quadratic equation, in place

of (23), a linear one. Looking at (33), we see that the stresslet term involving Ŝ has

a simpler coefficient, but there is the factor (σ̃ + 6D̂R)−1, representing the non-quasi-
steady nature of the p.d.f. f (e) and hence of the perturbation to 〈ee〉(1) in (17). Taking

D̂R = 1/6, the quadratic equation becomes

σ̃ 2 + σ̃ (ν̂κ ′2 + 1 − iλqκ ′μ) + κ ′2
(

ν̂ +
α0Ŝ

5

)
− iλqκ ′μ = 0. (44)

Thus, if q = 0, there is instability if and only if

α0Ŝ < −5ν̂ ; (45)

this is equivalent to (36), except that J2 = 0, so instability requires α0 �= 0 and Ŝ

negative and sufficiently large: rod-like pushers can drive a twist instability at any
angle (the result is independent of μ). If q �= 0, the same result holds even at very
small κ ′.
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Splay. The equation for σ̃ is now (35). Apart from being fourth order, because of the
non-quasi-steadiness of 〈ee〉(1), the main difference from (25) is the fact that K3 = 0
to O(λ) so the final stresslet term in (25) is absent. Hence, the SR instability given by
(39) is also absent.

If gravity is negligible, because λĝ is very small, then (35) has two negative roots,
and two which are the roots of (44), so splay modes are unstable under the same
conditions as twist modes. When gravity is not negligible, we consider small κ ′ such

that ν̂κ ′2 and Ŝκ ′2 are O(1) (the Stokes limit). If α0 = 0, the stresslet term disappears

altogether, so we take α0 = 1. If D̂R = 1/6 (as is appropriate for small λ), (35) becomes

σ̃ 4 + σ̃ 3(4/3 + ν̂κ ′2 − iλqκ ′μ) + σ̃ 2

[
1

3
+

1

3

(
ν̂ +

3Ŝ

5

)
κ ′2 − 4

3
iλqκ ′μ

]

+ σ̃

[
1

3

(
ν̂ +

Ŝ

5

)
κ ′2 − λĝκ ′2

15
(1 − μ2) − 1

3
iλqκ ′μ

]

+
1

3
κ ′4

(
ν̂ +

Ŝ

5

)
− λĝκ ′2

10
(1 − μ2) − 1

3
iλqκ ′3μ = 0. (46)

If λq = 0 and λĝ = O(1), then the second term in the coefficient of σ̃ is negligible, and
three of the roots of (46) are O(1) and the same as those just discussed for zero λĝ.
However, the fourth root is O(κ ′2) and is

σ̃ ≈ −κ ′2 +
λĝ(1 − μ2)

2(5ν̂ + Ŝ)
, (47)

which, when ĝ > 0, is positive for sufficiently small κ ′ as long as Ŝ > −5ν̂, the opposite
of (45). This is the gyrotactic instability and shows that gravity causes instability for
pullers (and for not very strong pushers) whenever λĝ is positive. On the other hand,
when ĝ < 0, instability to this mode can occur only when (45) is satisfied. Putting
λq �= 0 will have only a small effect on these results.

If we take κ ′ � 1 with ν̂, Ŝ, λĝ all O(1), then the results change, with λq �= 0 or =0.
Two roots of (46) are O(1) and negative (σ̃ ≈ −1 or – 1/3), but the other two are
O(κ ′), and in fact are very similar to those given by (42) for general λ. In particular,
when ĝ = −G < 0 and λq =0, but α0 �= 1, we have

Re(σ̃ ) ≈ κ ′2

2

[
λG(1 − μ2)

(3 − α0)

2
− ν̂ − 1 − α0

Ŝ

5

]
. (48)

Thus, head-heavy gravity is weakly destabilizing but pullers are more stable than
pushers. Once more, of course, viscosity is likely to damp out this instability in
practice.

5. Discussion
This paper mainly elucidates the effects of particle stress S, gravity g and rotational

diffusivity DR on the instability of a uniform suspension of swimming micro-
organisms. The basic state whose instability is examined is uniform, and the cells
swim on average in the same direction, either because gravity applies an external
torque to bottom- (or head-) heavy cells so that they swim upwards (g > 0) or
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downwards (g < 0) (with an equivalent effect for sedimenting cells of uniform density
but non-uniform geometry), or because the cells are responding to an external signal
such as light or a chemical gradient and exhibit phototaxis or chemotaxis, which is
modelled arbitrarily as if it were equivalent to an external torque (β > 0). The torque
counteracts the tendency to isotropy driven by rotary diffusion. Cells are taken to be
denser than the medium in which they are swimming (g �= 0) or neutrally buoyant
(g = 0). The cells may be pullers (S > 0) or pushers (S < 0).

The previous analyses of PHK and PK were for the bottom-heavy algal cells,
C. nivalis, for which g > 0 and S > 0, although PHK’s analysis was for S = 0. PK
included rotational diffusivity as well as particle stresses, but assumed that the p.d.f.
of swimming direction was quasi-steady. PHK also did not consider bend–twist
modes, for which the growth rates are given by (23), but that did not matter because
these modes all decay for g > 0, S � 0. In considering the splay modes (25), this paper
has confirmed that the gyrotactic instability of PHK is not qualitatively affected by
the presence of particle stresses.

Other previous analyses of note are those of SR and SS, who focused on the
effect of particle stresses by considering the neutrally buoyant case, g =β = 0, S �= 0,
without rotational diffusion (DR = 0). They showed that long-wavelength instability
would arise for both pullers and pushers, and that a suspension of pushers would
also be unstable to bend–twist modes. These findings are confirmed here, and these

instabilities dominate for large enough |Ŝ| and small enough |ĝ|. All modes of
instability occur in the limit of long wavelength (small κ ′). However, the two terms
in the perturbation to the particle stress tensor (11) are responsible for two different
modes of splay instability. One stems from the non-zero particle stress in the basic
state, multiplied by the fluctuation in cell number density n′; this mode, in which
the small growth rate is proportional to κ ′2, arises in the Stokes limit, i.e. in the
absence of fluid inertia, and would occur for arbitrarily large viscosity if not limited
by rotational diffusivity (see (40)). Both pushers and pullers give instability in this
case. The other mode stems from the perturbation to 〈ee〉 (multiplied by no) whether
it is quasi-steady or not, and also gives a growth rate proportional to κ ′2, but only

for pushers and only if |Ŝ|/ν̂ exceeds a critical value of O(1) (see (43a)). Therefore,
none of the instabilities except the gyrotactic instability will arise unless the particle
stresses are strong enough to overcome viscosity and/or rotational diffusivity.

It is of interest to see whether this is the case for the parameter values corresponding
to the experiments of Kessler (1986, 1989), given in tables 1 and 2. To see the splay

instabilities in the absence of gravity, the ratio |Ŝ|/ν̂, equal to no|S|DH/ρνV 2
o , would

have to be greater than the expression given by (40), for the SR mode, or 1/ max |B1|,
for the other mode (see (43a)). According to table 2, |Ŝ|/ν̂ is equal to 0.0033 for the
C. nivalis experiments and to 0.79 for the B. subtilis experiments. The right-hand side
of (40) is 0.59 and (approximately) 5 × 109, respectively (from table 2 and Appendix
B), so in neither case will the SR mode survive, even if no is increased by a factor
of 100. The quantity 1/|B1| has a minimum value of 16.7 and 2.4 × 103 in the two
cases, so the other particle-stress-driven mode is also not unstable in either case. In
particular, for the bacterial suspension to be unstable, the cell number density would
have to increase by a factor of 2400/0.79, i.e. to about 3 × 1012 cells cm−3, for either
of these two instabilities to be seen. At such large cell concentrations, the instability
is of course possible, which may be the source of the coherent structures seen by
Dombrowski et al. (2004), as postulated by SS, among others. It has been estimated
that, in these experiments, the volume fraction of B. subtilis cells was about 30 %
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(R. E. Goldstein, personal communication, 2009). Given the estimate of cell volume
given in table 1, this is equivalent to no ≈ 2 × 1012 cells cm−3, which is close to the
present estimate for the critical value.

A critical volume fraction was also predicted by SK in their recent very detailed
analysis, in which the particle stress was also taken to be quasi-steady. Instability was
predicted for bacteria (E. coli ) if, in the present notation,

noL
3 >

52.6(DRL/Vo)

1 − 2.05(DRL/Vo)
,

where L is the total length of the cell. Taking L = 10 μm gives no > 2.5 × 1010

cells cm−3, which is 100 times smaller than the present prediction. However, some
of the parameter values estimated here could well be incorrect, so the quantitative
accuracy of the predictions is probably limited.

The most novel result in this paper is the instability, highlighted by (43b), which
shows that a suspension of head-heavy swimmers (ĝ = −G < 0) can be unstable even
in the absence of particle stresses, if

B2G

4D̂2
R

> ν̂ + 1. (49)

(This result was obtained for purely horizontal disturbances, for which μ =0, but the
instability extends for non-zero values of μ.) This instability was not found by PK
and arises from the fact that f (e, x, t) is not here treated as quasi-steady when it is
used to calculate the perturbation to the cell swimming direction, 〈e〉(1), that is needed

in the perturbed cell conservation equation (21). This leads to the factor (σ̃ + 2D̂R)
in (25), a factor that was not present in the PK model. The disturbance propagates

horizontally with (dimensional) speed Vo(B2G/2D̂R)1/2 and grows slowly with growth
rate κ2σ2, σ2 being given by (43b).

The physical mechanism of this instability can be understood from a simplified
model in which particle stresses are absent (S =0), cells are assumed to be spherical
(αo = 0) and only horizontal disturbances are considered. We also neglect translational
diffusion and viscosity (for now), though not fluid inertia. We assume a disturbance
only in the x-direction, so that the leading contributions to the three governing
(dimensionless) equations are as follows:

Vertical momentum (20c):

∂w

∂t
= Gn′. (50)

Equation for perturbation to the average swimming direction (13):(
∂

∂t
+ 2DR

)
e1x = B2ω2 = −B2

∂w

∂x
. (51)

Cell conservation equation (21):

∂n′

∂t
= −∇ · e1 = −∂e1x

∂x
. (52)

We recall that g = −G < 0 and z (and w) are positive downwards. These equations
can be combined into a single partial differential equation for w:

c2 ∂2w

∂x2
=

(
1

2D̂R

∂

∂t
+ 1

)
∂2w

∂t2
, (53)
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where c2 =B2G/2D̂R . Hence, in the absence of the ∂/∂t term in (51), this is the wave
equation with wave speed c. When the ∂/∂t term is there, however, the amplitude of

the wave grows with time, with growth rate c2/4D̂R , as found above, brought about
by the delay in equilibration of the p.d.f. Of course, for realistic parameter values (49)
shows that viscosity will suppress this instability unless no is extremely large (since G

is proportional to no).
As noted in § 2, there are some ad hoc assumptions in the present model,

mainly associated with (a) the translational and rotational diffusivities, and (b) the
closure of the system of equations for the moments of the orientation distribution
function f .

(a) We have first assumed that, in the cell conservation equation (6), random
swimming can indeed be represented by a diffusivity tensor, equivalent to assuming
that the cells’ trajectories are Markovian random walks. Then, we have assumed
that the randomness of these trajectories comes about from two sources: intrinsic
differences between individuals within the population and rotational diffusion due
to fluctuations in an individual’s swimming mechanism. When rotational diffusion
dominates, the translational diffusivity can be evaluated in terms of the rotational
diffusivity as seen in (8) and demonstrated in Appendix A; this is the condition
corresponding to small values of λ, and has been applied to head-heavy pushers
(bacteria and spermatozoa) in the above discussion. However, for the larger algal
cells, the estimated translational diffusivity (from PHK) and the estimated value of
λ (from PK) are inconsistent with (8); we must assume that processes other than
rotational diffusion are important.

(b) We have shown that the main gyrotactic and particle-stress-driven instabilities
are not qualitatively affected by the assumptions used to close the sequence of
moment equations such as (15) and (17). If f (e) is taken to be quasi-steady, then
the PK and SR models are appropriate (for zero S and zero g respectively). In
particular, the SR instability arises in the Stokes limit, however large ν̂ is. However,
if 〈e〉 is not quasi-steady, but 〈ee〉 is, then two new features arise. One is that the

magnitude of D̂R determines the critical value of Ŝ/ν̂ (and hence no) for particle-
stress-driven instability to take place (see (40)). The other is the new possibility of a
wave-like instability for head-heavy cells, if the right-hand side of (43b) is positive.
If 〈ee〉 is also not quasi-steady, no new instability appears to arise, but this case
has been investigated only in the small-λ limit. We should recognize that truncating
the moment equations by assuming quasi-steady higher moments is strictly valid

only for large D̂R , but for a given D̂R the approximation gets better as the order
increases: (15) for 〈e〉(1) contains the factor (σ1 + 2DR), (17) for 〈ee〉(1) contains
(σ1 + 6DR), and the multiplier of DR will be correspondingly larger for higher
moments.

5.1. Applicability of ‘flocking’ models

As stated in the introduction, the model of SR was derived from the ‘flocking’ models
of Vicsek et al. (1995) and Toner & Tu (1998), as fully expounded by Toner et al.
(2005). The main differences lie in the equations for the cells’ mean orientation. In
our model, based on the torque or angular momentum balance for the cells, together
with rotational diffusivity, these are derived from the Fokker–Planck equation and
take the form of (15), (17), etc. The Toner & Tu model uses instead an equation for
the cell velocity V , relative to a fixed frame of reference, which takes the following
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form when the interaction with the fluid is ignored:

∂V
∂t

+ λ1(V · ∇)V + λ2(∇ · V )V + λ3∇(|V |2)

= α′V − β ′|V |2V − ∇p + D∇2V + DB∇(∇ · V ). (54)

Here the terms on the left-hand side with coefficients λi represent all possible
quadratic terms that are not ruled out by symmetry considerations, and are permitted
because the system does not exhibit Galilean invariance (which would require
λ1 = 1, λ2 = λ3 = 0). The same is true for the DB term on the right-hand side. The
‘body-force’ terms α′V − β ′|V |2V are an ad hoc representation of the fact that there
is an equilibrium state in which all cells swim in the same direction with speed
V0 = (α′/β ′)1/2. The quantity p is a ‘particle pressure’ whose effect is to keep the cells
apart, at a certain volume fraction, n0, on average:

p =

∞∑
j=1

ρj (n − n0)
j , ρ1 > 0. (55)

The term D∇2V in (54) represents translational diffusion of V and hence of e = V/|V |.
Presumably, this is supposed to arise from a combination of rotational diffusion and
the variations within a real population, but the rotational diffusion (at least) is not
modelled rationally, because the other features of non-zero DR , included here, are not
considered.
When fluid flow u is accounted for, there will be an additional advective term (u · ∇)V
on the left-hand side of (54) and reorienting viscous terms

1
2

ω ∧ V + γ2 e · E · (I − ee),

on the right-hand side, as in (9). However, in the present context, the ad hoc body
force terms would not be the most rational way to represent the cells’ locomotion
relative to the fluid. Moreover, the SR model does not include a restoring torque, as
represented by the β-term in (9).

The longitudinal k̂ component of (54) gives an equation for the perturbation in
swimming speed V ′. If this is taken to be quasi-steady (as assumed by SR), the
linearized form of the equation gives

2α′V ′ + ρ1imn′ = 0. (56)

The existence of a non-zero V ′ has a knock-on effect in (6) above (and hence (21)
also). However, the deterministic way of representing the equation for V (54) is
inconsistent with the Fokker–Planck approach used here. The linearized analysis can
be followed through, and shows that both the perturbation to the swimming speed
and the particle pressure are stabilizing influences.

I am most grateful to Ms D. Pihler-Puzovic, Dr T. Ishikawa and Dr J. T. Locsei
(who, in particular, showed me the derivations in Appendix A) for their help in the
preparation of this work. I would also like to record my warm appreciation of the
great pleasure, and great fun, that I derived from working with Steve Davis when we
were co-editors of JFM from 2000 to 2006.
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Appendix A. Relation between translational and rotational diffusivities
Let ψ(e, x, t) = nf be the number density of cells in probability and physical space

as a function of time (n(x, t) and f (e, x, t) are defined in the text). Then ψ satisfies

∂ψ

∂t
+ ∇x ·

{
(u + Voe − Vs k̂)ψ − DT · ∇xψ

}
+ ∇e · (ėψ) = DR∇2

eψ, (A 1)

where

ė = β
[

k̂ − (k̂ · e)e
]
ψ +

1

2
Ω∧eψ + αoe · Ê · (I − ee)ψ, (A 2)

and DT is a translational diffusivity, modelling all randomness except that due to
random rotations. Integrating (A 1) over e-space gives (6), in which

V = Vo〈e〉 =
Vo

n

∫
eψd2e,

and DT has been taken to be diagonal. If we multiply (A 1) by Voe and integrate, we
obtain the following equation for V :

∂

∂t
(nV ) + ∇x ·

{
(u − Vs k̂)nV − DT · ∇x(nV )

}
+ V 2

o ∇x · (n〈ee〉) = Von
˙〈e〉 − 2DRnV .

(A 3)

The manipulation leading to the last term is outlined below. Now, if the orientation
distribution is dominated by rotational diffusion, and is therefore nearly quasi-steady
and quasi-uniform, the top line of (A 3) may be neglected. It follows then that

V 2
o ∇x · (n〈ee〉) ≈ Von

˙〈e〉 − 2DRnV .

If it is additionally assumed that Vo| ˙〈e〉| � DR|V |, as for a small perturbation from
an equilibrium distribution, then

nV ≈ − V 2
o

2DR

∇x · (n〈ee〉) ≈ − V 2
o

6DR

∇xn, (A 4)

because in these circumstances the orientation distribution will be close to isotropic.
Finally, substituting (A 4) into (6), we see that

−∇x · (nV ) ≈ V 2
o

6DR

∇2
xn,

showing that rotational diffusion leads to an isotropic translational diffusivity of
magnitude V 2

o /6DR , i.e. (8). However, this result is dependent on the time scale for
macroscopic variations of ψ being much larger than D−1

R , so it will be valid for small
growth rate and small wavenumnber in the stability problem of this paper.

A.1. Manipulations in e-space

In integrating (A 1), multiplied by e or ee, it is necessary to note that

∇ei = (δij − eiej )
∂

∂ej

. (A 5)

It follows that, for any function f ,

∇2
ef = (δjk − ejek)

∂2f

∂ej∂ek

− 2ek

∂f

∂ek

. (A 6)
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Integrals over e-space (the unit sphere) involving derivatives are converted where
possible to surface integrals using the divergence theorem, and the surface integrals
are, in general, zero. Hence, for example,∫

e∇2
ef d2e =

∫
[∇e · (e∇ef ) − ∇e · e∇ef ] d2e

= +

∫
∇2

eef d2e = −2

∫
ef d2e = −2〈e〉, (A 7)

when f (e) is the p.d.f. for e, using (A 1) and (A 2). Similarly,∫
ee∇2

ef d2e = 2 [I − 3〈ee〉] . (A 8)

Also ∫
e∇e · (Bf )d2e = − 〈B〉 + 〈ee · B〉 , (A 9)

for any vector B, and∫
ee∇e · (Bf )d2e = − 〈Be + eB〉 + 2 〈ee e · B〉 . (A 10)

From these relationships, (A 3), (14) and (16) can be deduced.

Appendix B. Values of B1(μ) and B2(μ)
The functions B1(μ) and B2(μ) are given by (26a) and (26b). For C. nivalis, with

λ=2.2, the values in tables 1–3 give

B1 = 0.080(1 − 2μ2) − 0.020(1 − 2μ2)2 − 0.092μ2(1 − μ2),

B2 = 0.224 + 0.020μ2,

so B2 is positive for all μ, and B1 may be either positive or negative. For all the
pushers, for which |λ| is very small, we have

B1 ≈ λ3

36
(1 − 2μ2) − α0λ

15

[
(1 − 2μ2)2 + 9μ2(1 − μ2)

]
,

B2 ≈ λ

{
1

6
− α0

10

[
1 − β̂

3
(1 − 2μ2(1 − α0))

]}
.

Hence, for small λ, B1 < 0 unless α = 0 and μ2 < 1/2; B2 > 0 unless μ2 > 1/(2(1 − α0))

(i.e. α0 < 0.5) and β̂ is large.
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